
Scaling up Gaussian Belief Space Planning through
Covariance-Free Trajectory Optimization and

Automatic Differentiation

Sachin Patil, Gregory Kahn, Michael Laskey, John Schulman,
Ken Goldberg, Pieter Abbeel

University of California, Berkeley

Abstract. Belief space planning provides a principled framework to compute
motion plans that explicitly gather information from sensing, as necessary, to
reduce uncertainty about the robot and the environment. We consider the prob-
lem of planning in Gaussian belief spaces, which are parameterized in terms of
mean states and covariances describing the uncertainty. In this work, we show
that it is possible to compute locally optimal plans without including the covari-
ance in direct trajectory optimization formulations of the problem. As a result,
the dimensionality of the problem scales linearly in the state dimension instead
of quadratically, as would be the case if we were to include the covariance in
the optimization. We accomplish this by taking advantage of recent advances
in numerical optimal control that include automatic differentiation and state of
the art convex solvers. We show that the running time of each optimization step
of the covariance-free trajectory optimization is O(n3T), where n is the dimen-
sion of the state space and T is the number of time steps in the trajectory. We
present experiments in simulation on a variety of planning problems under un-
certainty including manipulator planning, estimating unknown model parameters
for dynamical systems, and active simultaneous localization and mapping (active
SLAM). Our experiments suggest that our method can solve planning problems
in 100 dimensional state spaces and obtain computational speedups of 400× over
related trajectory optimization methods.

1 Introduction
A key challenge in robotics is to robustly complete tasks such as navigation and manip-
ulation in the presence of uncertainty. One way to deal with uncertainty is to explicitly
gather information from sensing to reduce uncertainty about aspects of the robot and
the environment that are critical for completion of a task. The problem of computing
motion plans that optimally perform information gathering actions as necessary can be
formalized as a Partially Observable Markov Decision Process (POMDP) [21], which
is defined over the space of probability distributions of the state space, also referred to
as the belief space.

Computing globally optimal solutions for the POMDP problem is known to be com-
putationally intractable [8]. As a result, recent work including, but not limited to, [25]
[30] [16] [28] [36] [20] [12] [27], has focused on solving this problem in Gaussian be-
lief spaces, where beliefs are concisely parameterized as Gaussian distributions and are
propagated using a Bayesian filter such as an extended Kalman filter (EKF). This body

of work has lead to the development of novel methods for solving the problem. Unfor-
tunately, the computational effort involved in computing plans using these methods is a
bottleneck when there is considerable uncertainty during execution and it is potentially
necessary to re-plan at every time step in a receding horizon control context [28].

In this work, we formulate the planning problem in Gaussian belief spaces as a tra-
jectory optimization problem. We show that it is possible to compute locally optimal
plans by optimizing over just the control inputs and mean states as opposed to optimiz-
ing over control inputs, mean states, and covariances [28] [27]. We refer to this formula-
tion as covariance-free trajectory optimization in Gaussian belief spaces. Excluding the
covariance from the optimization has two major implications – (i) the dimension of the
optimization problem is now linear in the state dimension instead of quadratic, thereby
leading to considerable computational speedups, and (ii) this eliminates the constraint
that ensures that the covariances at all time steps are consistent with the Bayesian belief
update, which is nonlinear by virtue of matrix operations such as the matrix inverse
involved in the update.

We accomplish covariance-free trajectory optimization by taking advantage of two
recent advances in numerical optimal control. The first is the use of reverse mode au-
tomatic differentiation, which is a technique for efficiently evaluating derivatives of
scalar-valued computer represented functions up to machine precision [17] [2]. The
second is the development of efficient receding horizon convex solvers [14] [15] that
exploit a priori knowledge about the temporal structure of the problem to generate ef-
ficient solver code specific to a problem instance. We show that a combination of both
techniques is important for achieving a computational complexity of O(n3T) per opti-
mization step, where n is the state space dimension and T is the number of time steps.

We evaluate our approach in simulation vis-à-vis other trajectory optimization meth-
ods, including dynamic programming [36] and trajectory optimization with covariances
[28] [27]. We consider planning problems in a variety of domains including planning
manipulator motions under uncertainty [35], estimating parameters of inaccurate dy-
namical systems [39], and active simultaneous localization and mapping (active SLAM)
[20]. Our experiments suggest that by not including the covariance in the optimization,
it is possible to compute plans in Gaussian belief spaces for 100 dimensional state
spaces and we have obtained computational speedups of 400× over related methods.

2 Related Work
Planning in the belief space for many robotic tasks is naturally defined over continuous
state, action, and observation spaces. In this setting, prior work has tackled the planning
problem from a number of different angles:

(1) Point-based value iteration methods [29] [24] [3] select a limited set of representa-
tive belief points and iteratively apply value updates to those points to compute a
control policy over belief space.

(2) Simulation-based methods [33] [34] generate a few potential plans and select a plan
that optimizes a given metric such as information gain.

(3) Regression-based planning [22] uses logical representations of the belief state to
compute plans that achieve a desired goal.

(4) Sampling-based methods [30] [18] [7] [19] [1] use randomized exploration strate-
gies to explore the belief space in search of an optimal plan.

(5) Policy search methods [10] [12] directly optimize parameters of a control policy
using approximate inference in Gaussian belief spaces.

(6) Trajectory optimization methods [25] [16] [28] [36] [37] [20] [23] [27] compute
locally optimal trajectories (and policies, if applicable) that trade off actuation and
sensing actions to maximize information gain over a finite horizon.

Gaussian belief space planning focuses on Gaussian parameterizations of the be-
lief in terms of the mean and covariance. Of the aforementioned categories, specialized
methods in categories (4), (5), and (6), have been developed for computing locally op-
timal plans in Gaussian belief spaces. Trajectory optimization methods (category (6))
can be further classified into two categories (Fig. 1):

– Dynamic programming [5] in Gaussian belief spaces: Examples include using lin-
ear quadratic regulator (LQR) [28], differential dynamic programming (DDP) [16],
and iterative LQG [36]. In addition to computing a locally optimal trajectory, these
methods also compute an associated control policy.

– Direct optimization methods [6] in Gaussian belief spaces: Examples include op-
timizing just over controls (also known as shooting) [25] [20] or optimizing over
controls, mean states, and covariances (also known as collocation) [28] [27]. These
methods compute a locally optimal open-loop trajectory.

Trajectory Optimization

Dynamic
Programming

Direct
Optimization

Shooting
(controls only)

Partial Collocation
(controls,

mean states)

Full Collocation
(controls, mean

states, covariances)

Fig. 1. Taxonomy of trajec-
tory optimization methods
for Gaussian belief space
planning. Our covariance-
free optimization formula-
tion optimizes over con-
trols only (shooting) or
both controls and mean
states (partial collocation).

Our covariance-free trajectory optimization method lies in the sub-category of direct
trajectory optimization methods that optimize over controls and mean states only. Prior
work has explored shooting methods by directly optimizing over the sequence of control
inputs using control sampling [25], which is not desirable in the case of continuous
action spaces common in robotic tasks. Indelman et al. [20] use gradient descent to
optimize over the sequence of controls but use finite differences to compute the gradient
of the objective function. As we will show in Sec. 5, use of finite differences over long
trajectories leads to poorly conditioned gradients, leading to slow convergence. In this
work, we compute exact gradients using automatic differentiation (Sec. 4.2).

Prior work has also explored the possibility of optimizing over mean states and
control inputs for planning under uncertainty. However, the formulation of Vitus et
al. [38] cannot account for state- and control-dependent noise, which is important for
belief space planning. Kontitsis et al. [23] use covariance matrix adaption (CMA) based
optimization to optimize the objective subject to constraints on the evolution of the
mean state but this sampling-based optimization method is computationally expensive.

3 Gaussian Belief Space Planning: Preliminaries and Notation
Let x = [xR,xO]ᵀ ∈ Rnx be the system state consisting of the state xR of the robot and
the state xO of relevant objects in the environment. Let u = [uR,uO]ᵀ ∈ Rnu denote the
combined control input applied to the system and z = [zR,zO]ᵀ ∈ Rnz be the vector of
measurements obtained about the system state using sensors. We are given stochastic
dynamics and measurement models given by nonlinear differentiable functions f and h:

xt+1 = f(xt ,ut ,qt), qt ∼N (0, I), (1)
zt = h(xt ,rt), rt ∼N (0, I), (2)

where qt is the Gaussian dynamics noise and rt is Gaussian measurement noise.
We consider a Gaussian parameterization of the belief (x̂t ,Σt) consisting of the

mean state x̂t and the covariance Σt . We assume that the initial belief (x̂0,Σ0) is given.
Given a current belief (x̂t ,Σt), a control input ut , and a measurement zt+1, the belief
state evolves using a Bayesian filter such as an extended Kalman filter (EKF), according
to a stochastic process given by [36]:

x̂t+1 = f(x̂t ,ut ,0)−Kt(zt+1−h(f(x̂t ,ut ,0),0), (3a)

Σt+1 = (I−KtHt)Σ
−
t+1, (3b)

At =
∂ f
∂x

(x̂t ,ut ,0), Qt =
∂ f
∂q

(x̂t ,ut ,0), Σ
−
t+1 = AtΣtA

ᵀ
t +QtQ

ᵀ
t , (3c)

Ht =
∂h
∂x

(x̂t+1,0), Rt =
∂h
∂r

(x̂t+1,0), Kt = Σ
−
t+1Hᵀ

t (HtΣ
−
t+1Hᵀ

t +RtR
ᵀ
t)
−1. (3d)

We consider discrete-time Gaussian belief space planning problems that are solved
over a finite horizon T in which a robot performs information gathering actions as
necessary, to minimize uncertainty during task execution. For example, in localization,
a robot seeks to reduce the variance of its state, and in parameter estimation, the robot
seeks to reduce the variance of its model parameters. In general, objectives that are
functions of means, covariances, and control inputs can be considered.

Depending on the optimal control method used, the objective is to either compute a
sequence of controls ut or a control policy ut = πt(x̂t ,Σt) for all 0 ≤ t < T that mini-
mizes the objective:

E
z1:T

[
cT (x̂T ,ΣT)+

T−1∑
t=0

ct(x̂t ,Σt ,ut)
]
, (4)

where cT and ct are given immediate cost functions and the expectation is taken over the
stochastic measurements. The planning problem can be illustrated as a graphical model
as shown in Fig. 2. The solid lines in the graphical model indicate relationships between
the means x̂0:T , covariances Σ0:T , and controls u0:T−1. The dashed lines indicate the
dependence of the immediate cost functions c0:T and the different variables.

In our experiments, we encode the objective of minimizing the uncertainty while
penalizing the control effort by using cost functions of the form:

ct(x̂t ,Σt ,ut) = tr(MtΣt)+uᵀ
t Ntut , cT (x̂T ,ΣT) = tr(MT ΣT) (5)

where minimizing the trace of the covariance Σt minimizes the uncertainty and matri-
ces Mt and Nt are positive semi-definite cost matrices. However, the cost functions are
general enough to include additional problem-specific terms.

Σ0 Σ1 ΣT· · ·

x̂0 · · ·x̂1 x̂T

u0 u1 · · ·

c0 c1 cT· · ·

Fig. 2. Graphical model for finite
horizon Gaussian belief space plan-
ning. Given the initial belief (x̂0,Σ0),
all subsequent x̂t and Σt are functions
of x̂0, Σ0, and the sequence of controls
u0:t−1. The immediate cost functions
ct and cT are functions of the controls,
mean states, and covariances.

4 Covariance-Free Trajectory Optimization

4.1 Formulation
Direct methods for trajectory optimization [6] formulate the planning problem as a non-
linear trajectory optimization problem. In this setting, the stochastic, partially-observed
control problem described in Sec. 3 is replaced by a deterministic optimal control prob-
lem, which is computationally tractable. As first pointed out by Platt et al. [28], this
can be accomplished by making the assumption that the maximum likelihood observa-
tion is obtained at each time step, i.e., zt = h(x̂t ,0). This eliminates the stochasticity
in the evolution of the mean state (Eq. (3a)), converting the problem into a determinis-
tic optimal control problem. The goal is to compute a sequence of controls u0:T−1 that
minimizes the objective cT (x̂T ,ΣT)+

∑T−1
t=0 ct(x̂t ,Σt ,ut), without the expectation term

appearing in the original objective (Eq. (4)). This class of methods computes an open-
loop sequence of controls u0:T−1. During execution, we follow the model predictive
control paradigm [9] of repeatedly re-planning to account for the current observation.
However, the key is to be able to re-plan sufficiently fast.

Since all subsequent x̂t and Σt are functions of x̂0, Σ0, and the sequence of controls
u0:t−1, as shown in Fig. 2, it is possible to formulate the optimization problem in terms
of one or more of controls, mean states, and covariances. The three possible formula-
tions are shown in Table 1. Here, C(·) represents the objective expressed in Eqs. 4, 5 in
terms of the optimization variables, x̂target represents the desired mean target state, and
Xfeasible and Ufeasible are sets of feasible states and control inputs, respectively.

Of these, the shooting and partial collocation formulations constitute the covariance-
free optimization formulations considered in this work and are described below:

(i) Shooting: The objective C(x̂0,Σ0,u0:T−1) is a nonlinear function of the initial
belief (x̂0,Σ0) and the sequence of controls u0:T−1 since the immediate cost functions
ct(x̂t ,Σt ,ut) are dependent on the previously applied controls (Fig. 2). For planning
problems, it is often desired that the mean state at the final time step is at a desired
target, i.e., x̂T = x̂target. However, since x̂T is dependent on the sequence of controls, the
optimization contains a possibly nonlinear constraint f̃(x̂0,u0:T−1,0) = x̂target, where
f̃(x̂0,u0:T−1,0) = f(f(. . .(f(x̂0,u0),u1), . . .),uT−1) computes the state at time step T . A
similar iterative nonlinear constraint arises for restricting the states x̂0:T to the set of
feasible states Xfeasible. In practice, these nonlinear constraints are typically added as
costs to the optimization objective. The optimization problem has dimension nuT .

(ii) Partial Collocation: A second formulation considers optimizing over the con-
trols u0:T−1 and mean states x̂0:T . Similar to shooting, the objective C(x̂0:T ,Σ0,u0:T−1)

Covariance-free Trajectory Optimization
Shooting Partial Collocation Full Collocation

min
u0:T−1

C(x̂0,Σ0,u0:T−1)

s. t f̃(x̂0,u0:T−1,0) = x̂target

f̃(x̂0,u0:t−1,0) ∈ Xfeasible

ut ∈ Ufeasible

min
u0:T−1
x̂0:T

C(x̂0:T ,Σ0,u0:T−1)

s. t x̂t+1 = f(x̂t ,ut ,0)
x̂T = x̂target,

x̂t ∈ Xfeasible,

ut ∈ Ufeasible

min
u0:T−1
x̂0:T
Σ0:T

C(x̂0:T ,Σ0:T ,u0:T−1)

s. t x̂t+1 = f(x̂t ,ut ,0),
Σt+1 = (I−KtHt)Σ

−
t+1,

x̂T = x̂target,

x̂t ∈ Xfeasible,

ut ∈ Ufeasible

Table 1. Three possible formulations for direct trajectory optimization in Gaussian belief spaces.
Our covariance-free optimization formulation either optimizes only over controls (shooting) or
over controls and mean states (partial collocation).

is nonlinear and dependent on the initial covariance Σ0 and the mean states and controls
(Fig. 2). In this formulation, the final target constraint x̂T = x̂target is directly included in
the optimization as x̂T is included in the optimization. Similarly, bounds on the controls
and mean states are directly included in the optimization. The optimization problem has
dimension (nx +nu)T .

Comparison with Full Collocation: Prior work has typically considered full col-
location that optimizes over means, controls, and covariances [28] [27]. The main ad-
vantage of full collocation is that the objective C(x̂0:T ,Σ0:T ,u0:T−1) is only dependent
on local variables at each time step. The objective considered in this work turns out to
be quadratic, which is suitable for numerical optimization methods. Also, constraints
on the mean states and controls are directly included in the optimization formulation.

However, since the covariance matrices Σt are included in the optimization, it is
important to ensure that the covariance matrices are consistent with the evolution of
the belief state, as given in Eq. (3b). This equality constraint is nonlinear because of
the presence of matrix operations, particularly the matrix inverse used to compute the
Kalman gain (Eq. (3d)), and is difficult to satisfy in a numerical optimization proce-
dure. In addition, the optimization dimension increases because of the inclusion of the
covariance matrices. The optimization problem has dimension (nx(nx + 1)/2+ nu)T ,
where we exploit the symmetry in Σt to only store the lower diagonal half [28] [27].
Additional care, such as using the square root of the covariance matrix instead of the
covariance itself [27], also needs to be taken to ensure that the covariances remain pos-
itive semi-definite during the course of the optimization.

4.2 Tools for Covariance-Free Trajectory Optimization
We rely on two key advances in numerical optimal control – (i) automatic differenti-
ation to accurately compute gradients of the nonlinear objective, and (ii) state of the
art convex solvers that are used in a sequential quadratic programming framework for
optimizing the nonlinear objective subject to constraints.

Automatic Differentiation: For covariance-free trajectory optimization, the objec-
tive C(x̂0,Σ0,u0:T−1) is a nonlinear function of the initial belief (x̂0,Σ0) and the se-
quence of controls u0:T−1. If numerical finite differences are used to compute the gradi-
ent of the nonlinear objective, then the gradients are poorly conditioned. For instance,

a small change in the control input u0 will often have a dramatically large effect on
the objective as compared to a small change in uT−1. In Sec. 5, we show that using
gradients computed using finite differences indeed lead to slower convergence. One al-
ternative would be to hand-compute the analytical expressions of first and preferably
second-order derivatives. However, this is difficult for complex functions such as the
matrix inverse involved in the belief dynamics (Eq. (3)). Special cases also need to be
taken into account to correctly handle singularities in computation.

Automatic differentiation (AD) [17] is a technique for evaluating derivatives of
computer represented functions and can deliver directional derivatives, up to machine
precision, of arbitrary computer-represented functions. Automatic differentiation has
resulted in the development of efficient numerical optimal control methods [13] and
recent work on optimization on manifolds for robotics applications [32]. We note that
automatic differentiation is different from symbolic differentiation, which directly op-
erates on functions represented in a special purpose symbolic language. We refer the
reader to Griewank et al. for a comparative study [17].

In our case, since the objective is scalar valued, we use the reverse mode for dif-
ferentiation that offers considerable savings to be made by exploiting the structure,
sparsity, and symmetry of the Jacobian. Several computational tools have been devel-
oped to facilitate reverse mode automatic differentiation. Examples include Theano [4],
ADOL-C [17], and CasADi [2]. We use CasADi since it also supports matrix-valued
atomic operations. We only compute the gradients using automatic differentiation and
not the complete Hessian of the objective. Even though it is possible to compute the
entire Hessian, it is computationally very expensive and does not scale well to larger
problems. We use the symmetric rank 1 (SR1) update method to update the Hessian
using the gradients computed using automatic differentiation [26].

An important consequence of using reverse-mode automatic differentiation is what
is known as the cheap gradient principle which states that the complexity of computing
the gradient of a scalar-valued function is bounded above by a small constant factor
times the complexity of evaluating the function itself [17]. This fact will be used in the
analysis of the running time of covariance-free trajectory optimization methods.

State of the art Convex Solvers: We use sequential quadratic programming (SQP)
to locally optimize the non-convex, constrained optimization problem that results from
the covariance-free formulation. SQP [26] optimizes problems in parameter θ of the
form minθ C(θ) subject to constraints. One repeatedly constructs a quadratic program
(quadratic objective and linear constraints) that locally approximates the original prob-
lem around the current solution θ . Then one solves the quadratic program to compute
a step ∆θ that make progress on the original problem. Two necessary ingredients in a
SQP implementation are trust regions and merit functions. A trust region constrains θ

in each subproblem to the region where the approximation is valid. The trust region is
adaptively changed based on the merit function, which has the form fµ(θ) = f (θ)+
µ ·ConstraintViolation(θ). Here, µ is a given penalty parameter that penalizes viola-
tions of nonlinear constraints, and it ensures that the steps taken by the algorithm make
progress on both the cost function and the constraints. The optimization algorithm has
an outer loop that solves a series of problems minθ fµ0(θ),minθ fµ1(θ), . . . ,minθ fµn(θ)
for µ0 < µ1 < · · ·< µn where the penalty parameter µ is sequentially increased. In our

implementation, we used sequential quadratic programming (SQP) with `1 penalties
[26], also used by Schulman et al. [31] for robot motion planning in state space.

At the core of the SQP method is a QP solver. We efficiently solve the underlying
QPs using a numerical optimization code generation framework called FORCES [15].
FORCES generates code for solving QPs that is based on the interior-point method
and is specialized for convex multistage problems such as trajectory optimization. Au-
tomatic code generation for convex solvers has gained popularity since it is able to
exploit the fact that all problem dimensions and the structure of the problem is known
a priori. This permits generation of highly customized and fast solver code that solves
instances of a particular problem. We use this solver for all our experiments, including
for the full collocation formulation.

An important consequence of using the FORCES code generation framework is that
the complexity of solving a QP in m optimization variables and T time steps is O(m3T),
instead of worst case complexity of O(m3T 3) that is associated with a condensing pro-
cedure used to reduce the number of optimization variables in QP solvers [14]. This
speedup is obtained from exploitation of the known temporal structure of the problem.
This fact will be used in the analysis of the running time of covariance-free trajectory
optimization methods.

4.3 Running Time Analysis

For the sake of analysis, we assume that the dimension nx of the state space, nu of the
control input space, and nz of the measurements are O(n). As a result, the covariance
matrix has dimension O(n2). Let T be the number of time steps in the trajectory being
optimized, also referred to as the trajectory horizon. We analyze the complexity of each
step of the optimization procedure since the number of optimization steps required for
convergence cannot be expressed in terms of n or T .

Computing the objective (Eq. (5)) requires the propagation of the beliefs along a tra-
jectory according to Eq. (3). Since the Bayesian update requires matrix operations such
as multiplication operations and matrix inversion of matrices of order O(n2), the com-
plexity of each update step is O(n3). As a result, the overall complexity of computing
the objective for all time steps is O(n3T).

We analyze the complexity of each step of the optimization for covariance-free op-
timization. The complexity of computing the gradients using reverse-mode automatic
differentiation is O(n3T) using the cheap gradient principle. The shooting and partial
collocation formulations have nuT and (nx +nu)T optimization variables, respectively.
The complexity of solving each QP using the FORCES code generation framework is
O(n3T). This is the same order of complexity as computing the objective, and hence is
a lower bound on the planning complexity for trajectory optimization methods.

We note that the locally optimizing the full collocation formulation is of the order
of O(n6T), since it contains (nx(nx + 1)/2+ nu)T or O(n2)T optimization variables.
In practice, however, the nonlinear equality constraint that ensures that the beliefs are
consistent with the belief update (Eq. (3b)) requires introduction of additional slack
variables in the SQP method with `1 penalties, which results in a large constant factor.
We also note that the complexity of dynamic programming methods is O(n6T) for iLQG
[36], which can be reduced to O(n4T) if the immediate cost functions are assumed to
be quadratic in the mean and linear in the variance, as is the case in our work.

5 Experiments
We present experimental results in simulation for Gaussian belief space planning in a
variety of domains involving uncertainty, including planning manipulator motions, es-
timating model parameters for uncertain dynamical models, and active simultaneous
localization and mapping (active SLAM). All execution times are based on a C++ im-
plementation of our method running on a single 3.5 GHz Intel i7 processor core.

5.1 6-DOF Manipulator Planning with Kinematics
In this experiment, we consider a 6-DOF A465 CRS robot arm moving in a 3D en-
vironment [35], as shown in Fig. 3. The state xt = [θ 1

t , . . . ,θ
6
t]

ᵀ of the robot is a 6D
vector consisting of the joint angles. The control input ut = [ω1

t , . . . ,ω
6
t]

ᵀ is a 6D vec-
tor consisting of the angular speeds at each of the joints, corrupted by dynamics noise
qt = [q1

t , . . . ,q
6
t]
ᵀ ∼N (0, I). The robot receives feedback from an overhead stereo cam-

era setup that measures the position of the end effector pt = [xt ,yt ,zt]
ᵀ. Each camera

ci has a known location [xi,yi,zi]ᵀ and unit focal distance. The measurement zt is a 4D
vector consisting of the pixel coordinates of the end effector on the imaging planes of
both cameras, corrupted by Gaussian measurement noise rt ∼ N (0, I). This results in
the following stochastic dynamics and measurement models:

f(xt ,ut ,qt) = xt + τ(ut +αqt), (6a)

h(xt ,rt) =
[(xt − x1)

(yt − y1)
,
(zt − z1)

(yt − y1)
,
(xt − x2)

(yt − y2)
,
(zt − z2)

(yt − y2)

]ᵀ
+βrt , (6b)

where τ is the duration of each time step, and α and β are scaling constants for the
dynamics and measurement noise terms. It is important to note that the signal to noise
ratio, and hence the reliability of measurements, increases with a decrease in the dis-
tance to the stereo camera setup.

The objective is to move the robot end effector from an initial position to a target
position while minimizing uncertainty in the end effector position. Let N (p̂T ,Σ(p̂T))
be the uncertainty in the end effector position with mean p̂T and covariance Σ(p̂T) ∈
R3×3. We approximate Σ(p̂T) as Σ(p̂T) = JΣT Jᵀ, where ΣT is the covariance in the
state at the final time step and J = ∂g

∂x (x̂T) is the Jacobian of the forward kinematics
function g(x) = p evaluated at the final mean state x̂T . The objective is to minimize
tr(MT Σ(p̂T))+

∑T−1
t=0 uᵀ

t Ntut , which optimizes the trade-off between minimizing un-
certainty and the cumulative control effort, for given matrices MT and Nt , 0≤ t < T .

Experiments: Fig. 3(a) shows a baseline interpolated trajectory between the start
position and target position. Fig. 3(b) shows an instance of a trajectory computed using
belief space planning using covariance-free partial collocation. The plan is able to infer
that it is advantageous to get closer to the camera to get more reliable measurements
before heading to the target to reduce uncertainty at the final time step.

We compared the performance of the three direct optimization formulations on this
problem. Dynamic programming methods such as iLQG [35] are unable to compute a
solution for this problem due to the inability to enforce joint angle constraints. To evalu-
ate the performance of these methods, we considered 100 random initial start positions
while keeping the mean target position constant for the end effector. All trajectories
have a horizon of T = 15 time steps. We compared the different methods on the basis

(a) (b)

Fig. 3. 6-DOF Manipulator: The objective is to move the end effector from the initial position
(blue sphere) to the final mean target position (red sphere) while minimizing the uncertainty in its
position. The robot receives feedback from a stereo camera setup mounted overhead (shown in
green). The trajectory of the end effector is shown in black. The initial and final variance is shown
as a blue and red ellipse, respectively. (a) A naı̈ve trajectory obtained by interpolating between
the initial and target states (joint angles) results in considerable uncertainty at the final time step.
(b) A belief space plan infers that it is advantageous to get more reliable measurements by getting
closer to the stereo camera setup, hence resulting in reduced uncertainty at the target.

of computation time and by how much the planning was able to improve the consid-
ered objective when compared to a baseline interpolated trajectory between the start
and target states (Fig. 3(a)). The results are summarized in Table 2. The experiments
show a significant speed up of up to 200× is obtained by excluding the covariance from
the optimization. The partial collocation formulation performs best, in part because the
dynamics constraint x̂t+1 = f(x̂t ,ut ,0) is a linear constraint. In the shooting method,
we include an additional cost term to penalize violation of the constraint that the end
effector should be at a desired target position. This cost term conflicts with the original
objective, leading to lower quality trajectories.

Opt. vars Time (s) Improvement
over baseline (%)

Shooting 84 0.046 ± 0.014 29.7 ± 5.1
Partial Coll. (auto diff.) 174 0.024 ± 0.004 71.6 ± 1.7
Partial Coll. (finite diff.) 174 0.902 ± 0.184 69.5 ± 2.4

Full Coll. 405 6.518 ± 0.510 56.8 ± 2.3

Table 2. Comparison of trajectory optimization methods on the 6-DOF manipulator scenario in
terms of computation time and improvement over a baseline interpolated trajectory.

We also compared the effect of using automatic differentiation (Sec. 4.2) versus
using numerical finite differences for the partial collocation formulation. Using finite
differences leads to poorly conditioned gradients, which leads to slower convergence. In
our experiments, we observed slowdowns of up to 40× as compared to implementations
that used automatic differentiation to compute gradients.

5.2 Parameter Estimation for Two-Link Pendulum with Dynamics
In this experiment, we consider a two-link pendulum [11] actuated at both joints. How-
ever, the lengths [l1, l2]ᵀ and masses [m1,m2]ᵀ of the pendulum are not exactly known.

We follow the method of Webb et al. [39] to estimate these uncertain parameters us-
ing Gaussian belief space planning by considering an augmented state consisting of
the pendulum state and the parameters. The objective is to infer the model parameters
{m1 = m2 = 0.5kg, l1 = l2 = 0.5m}, given noisy measurements of the end-effector po-
sition of the pendulum and the joint velocities. While random exploration can be used to
solve this problem, we demonstrate that Gaussian belief space planning can be used to
intelligently explore by acquiring information from sensing and hence converge faster
to the actual model parameters.

The system state xt = [θ 1
t ,θ

2
t , θ̇

1
t , θ̇

2
t , l

1
t , l

2
t ,m

1
t ,m

2
t]
ᵀ of the robot is a 8D vector

consisting of the joint angles, the angular velocities of the joints, and the four pa-
rameters that need to be estimated. The control input ut = [µ1

t ,µ
2
t]

ᵀ is a 2D vector
consisting of the motor torques. The robot state is also corrupted by Gaussian noise
qt = [q1

t , . . . ,q
4
t ,04×1]

ᵀ ∼N (0, I). This yields the following nonlinear dynamics model:

f(xt ,ut ,qt) = xt + τ[θ̇ 1
t , θ̇

2
t , θ̈

1
t , θ̈

2
t ,04×1]

ᵀ+αqt , where (7a)[
θ̈ 1

t

θ̈ 2
t

]
=

[1
3 m1

t l1
t l1

t +m2
t l1

t l1
t

1
2 m2

t l2
t l1

t cos(θ 1
t −θ 2

t)
1
2 l1

t l2
t m2

t cos(θ 1
t −θ 2

t)
1
3 m2

t l2
t l2

t

]−1 [
c1
c2

]
, (7b)[

c1
c2

]
=

[
−l1

t (
1
2 m2

t l2
t θ̇ 2

t θ̇ 2
t sin(θ 1

t −θ 2
t)−gsinθ 1

t (
1
2 m1

t +m2
t))+µ1

t
1
2 m2

t l2
t (l

1
t θ̇ 1

t θ̇ 1
t sin(θ 1

t −θ 2
t)+gsinθ 2

t)+µ2
t

]
, (7c)

where τ is the duration of the time step, α is the noise scaling factor, and g = 9.82m/s2

is the gravitational constant. In our implementation, we use Runge-Kutta (RK4) inte-
gration of the dynamics for numerical stability.

The robot obtains noisy measurements of the position of the end effector and the
angular velocities at each joint. The measurement zt is a 4D vector, corrupted by mea-
surment noise rt ∼N (0, I) that is related to the state xt according to

h(xt ,rt) = [l1
t cosθ

1
t + l2

t cosθ
2
t , l

1
t sinθ

1
t + l2

t sinθ
2
t , θ̇

1
t , θ̇

2
t]

ᵀ+βrt , (8)

where β is the measurement noise scaling factor.
Experiments: Fig. 4 shows the performance of different optimal control methods

on convergence of the parameter m1 as compared to execution of a random sequence of
controls. We note that the parameter values are not updated as part of the planning pro-
cess. We execute the first control for each computed plan in a model predictive control
fashion and then update the parameters using the full Bayesian update of the belief that
incorporates the current simulated observation (Eq. (3)). Belief space planning is able
to explore by intelligently gathering information as required for faster convergence in
terms of the number of execution steps required. We consider a trajectory with T = 15
time steps. Due to space limitations, we only show convergence results for one param-
eter m1. Similar results were obtained for the second mass parameter. However, the
length parameters l1 and l2 converge faster to the correct values since they explicitly
occur in the measurement model.

The performance of optimal control methods is also compared in Fig. 4, as averaged
over 100 runs and 300 execution time steps. In terms of convergence, all the methods
require roughly the same number of execution steps for converging to a reasonable es-
timate. However, there is a considerable difference in execution times. The shooting

Opt. vars Time(s)
Shooting 28 0.004 ± 0.002

Partial Coll. 148 0.152 ± 0.109
Full Coll. 570 1.595 ± 0.068

iLQG – 0.153 ± 0.017

Fig. 4. Parameter Estimation: (left) The performance of different optimal control methods on
the parameter estimation scenario. (right) The convergence of the parameter m1 to the true value
of 0.5 kg (red) for different optimal control methods. The value of the parameter m1

t is plotted
over time (blue) and three standard deviations of the uncertainty in the parameter value is shown
in cyan. The timestep where the value is within 10% of the true value is marked in green.

formulation is up to 400× faster than the full collocation formulation with the covari-
ance in the optimization. We also compare with a state of the art iLQG implementation
[37] and found that iLQG was 10× faster than full collocation but convergence of iLQG
to the true parameter values was slower than the covariance-free formulations.

5.3 Active SLAM

Active simultaneous localization and mapping (active SLAM) [20] [33] [34] aims to
compute plans for a mobile robot to explore the environment (represented in terms
of landmarks) such that the uncertainty about the environment and the robot state are
simultaneously minimized in a SLAM framework.

We consider a car-like robot with state xR
t = [xt ,yt ,θt]

ᵀ consisting of the car position
[xt ,yt]

ᵀ and heading angle θ . The control inputs ut = [vt ,φt]
ᵀ consist of the velocity vt

and steering angle φt , corrupted by Gaussian noise qt = [q1
t ,q

2
t]
ᵀ. Let W be the length of

the wheelbase of the robot. The state of the environment xO ∈R2·L is a vector consisting
of L landmark positions [xi,yi]ᵀ, i ∈ {1, ...,L}. The combined system state is then given
by xt = [xR

t ,xO]ᵀ. The observation function z∈R2·L consists of the distance and heading
measurements from the current state of the robot relative to each landmark. Following
the framework of standard EKF-SLAM, this gives us the following stochastic dynamics
and measurements models:

f(xt ,ut ,qt) =


xt
yt
θt
xO

+

(vt +q1

t)cos(θt +φt +q2
t)

(vt +q1
t)sin(θt +φt +q2

t)
(vt +q1

t) tan(φt +q2
t)/W

02·L×1

 , h(xt ,rt) =



√
(xt − x1

t)
2 +(yt − y1

t)
2

tan−1(
yt−y1

t
xt−x1

t
)−θt

...√
(xt − xL

t)
2 +(yt − yL

t)
2

tan−1(
yt−yL

t
xt−xL

t
)−θt


+ rt .

(a) (b)

Fig. 5. Active SLAM: A car-like robot navigating in an environment with L = 12 landmarks.
The robot uses EKF-SLAM for simultaneous localization and mapping. The objective is to plan
motions for the robot to visit four landmarks (in counter-clockwise order) in the environment,
starting from the bottom left, to minimize uncertainty in its state and the landmark positions. (a)
A state space trajectory is unable to detect any landmarks due to the limited range of sensing
of the robot, resulting in considerable accumulation of uncertainty (shown as blue ellipses). (b)
Belief space planning using covariance-free partial collocation computes a plan that leads the
robot to visit landmarks en route to waypoints to considerably reduce uncertainty.

Experiments: In this scenario, the robot has a limited sensing range and can only
sense landmarks within a distance of dmax from its current position. In order to get a
smooth measurement function, we smooth the boundary of the circular sensing region
of radius tmax using a sigmoid function [28]. Fig. 5(a) shows a state space trajectory that
visits four waypoints in the environment (in counter-clockwise order), each segment
consisting of T = 15 time steps. However, due to the limited sensing range, the robot
is unable to detect any of the landmarks, hence resulting in a considerable increase
in uncertainty along the entire trajectory. In contrast, belief space planning using the
partial collocation formulation is able to compute plans that visit landmarks en route to
waypoints to reduce uncertainty in robot state and landmark positions (Fig. 5(b)).

We compared the performance and improvement over a baseline state space trajec-
tory (Fig. 5(a)) for varying number of landmarks. The landmark positions were sam-
pled within three clusters in the environment to preserve the complexity of the planning
problem. Fig. 6(a) shows the performance of covariance-free optimization formulations
(both shooting and partial collocation) as compared to full collocation and iLQG [37].
The covariance-free formulations are faster than full collocation and iLQG, which is
consistent with our preliminary analysis of the running times of these formulations. The
shooting formulation is slower than partial collocation because of the target constraints
imposed by the waypoints, which leads to slower convergence.

Fig. 6(b) shows the improvement in the objective using belief space planning rel-
ative to the objective evaluated for a baseline state space trajectory. Partial collocation
leads to greatest reduction in the objective as compared to other methods. The improve-
ment increases with an increase in the number of landmarks, indicating that belief space
planning computes different plans that optimize the objective further, for different ar-
rangements of landmarks.

We could not scale the covariance-free formulations beyond 50 landmarks because
of the inability of CasADi [2] to compute gradients using automatic differentiation since

3456 10 15 20 25 30 35 40 45 50
Number of landmarks

0

100

200

300

400

500

600

Ti
m

e
(s

ec
on

ds
)

Time per number landmarks

Shooting
Partial Coll.
Full Coll.
iLQG

(a)

3456 10 15 20 25 30 35 40 45 50
Number of landmarks

100%

200%

300%

400%

500%

600%

700%

Im
pr

ov
em

en
t

Cost factor versus trajectory

Shooting
Partial Coll.
Full Coll.
iLQG

(b)

Fig. 6. Active SLAM: (a) Performance of trajectory optimization methods as the number of land-
marks in the environment increase shown in terms of the mean and 1 standard deviation computed
across 25 runs. (b) Improvement in the objective relative to the objective evaluated for a baseline
state space trajectory shown in Fig. 5(a). Partial collocation performs best in terms of both crite-
ria. Overall, covariance-free optimization scales to 50 landmarks (103 dimensional state space)
with an average computation time of 103 seconds for the entire trajectory.

CasADi usage exceeded available memory. However, this tool is under active develop-
ment and we envision that future releases will allow us to scale beyond this number.

6 Discussion and Conclusion
In this work, we focused on trajectory optimization formulations for computing locally
optimal plans in Gaussian belief spaces. We showed that by excluding the covariance
from the optimization, we can solve planning problems in 100 dimensional state spaces
and obtain computational speedups of 400× compared to related approaches that in-
corporate the covariance in the state. The running time complexity per step of the opti-
mization is O(n3T), which is an improvement over related approaches. We summarize
the pros and cons of the different trajectory optimization formulations in Table. 3.

Covariance-free Opt.
Shooting Partial Full Dynamic

Collocation Collocation Programming
Quadratic objective (Eq. (5)) X X X X

Control policy X X X X

Max likelihood X X X X

observation assumption
Infeasible initialization X X X X

Ensures Σt � 0 (PSD) X X X X

Target constraint X X X X

State bounds X X X X

Control bounds X X X X

Covariance bounds X X X X

Optimization nuT (nx +nu)T (
nx(nx+1)

2 +nu)T T problems of
problem size size (

nx(nx+1)
2 +nu)

Complexity per O(n3T) O(n3T) O(n6T) O(n6T) [36]
optimization step O(n4T) [37]

Table 3. Comparison of trajectory optimization methods for Gaussian belief space planning.

Our experiments suggest that covariance-free partial collocation offers consider-
able promise moving forward. In future work, we plan to improve on the scalabil-
ity of covariance-free trajectory optimization. We also plan to address the issue of
collision avoidance by adding a cost term to the objective as in Van den Berg et al.
[36]. These preliminary results are encouraging and we posit that advances in numer-
ical optimal control techniques and computational hardware will allow our method
to plan at high frequencies for large-scale belief space planning problems that arise
in the real world. Further information, including an expanded version of the paper
and code for reproducing the results reported in this paper, is available at: http:
//rll.berkeley.edu/beliefopt/.

References

1. Agha-mohammadi, A., Chakravorty, S., Amato, N.M.: FIRM: Sampling-based Feedback
Motion Planning Under Motion Uncertainty and Imperfect Measurements. Int. Journal of
Robotics Research 33(2), 268–304 (2014)

2. Andersson, J., Åkesson, J., Diehl, M.: CasADi: A Symbolic Package for Automatic Dif-
ferentiation and Optimal Control. In: Recent Advances in Algorithmic Differentiation, pp.
297–307. Springer (2012)

3. Bai, H., Hsu, D., Lee, W.S.: Integrated Perception and Planning in the Continuous Space: A
POMDP Approach. In: Robotics: Science and Systems (RSS) (2013)

4. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J.,
Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU Math Expression Compiler. In: Proc.
of Python for Scientific Computing Conference (SciPy) (2010)

5. Bertsekas, D.: Dynamic Programming and Optimal Control. Athena Scientic (2001)
6. Betts, J.T.: Practical Methods for Optimal Control and Estimation using Nonlinear Program-

ming, vol. 19. SIAM (2010)
7. Bry, A., Roy, N.: Rapidly-exploring Random Belief Trees for Motion Planning Under Un-

certainty. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). pp. 723–730 (2011)
8. C. Papadimitriou, J.T.: The Complexity of Markov Decision Processes. Mathematics of Op-

erations Research 12(3), 441–450 (1987)
9. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer Verlag, London, UK (2004)

10. Dallaire, P., Besse, C., Ross, S., Chaib-draa, B.: Bayesian Reinforcement Learning in Con-
tinuous POMDPs with Gaussian Processes. In: IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS). pp. 2604–2609 (2009)

11. Deisenroth, M., Mchutchon, A., Hall, J., Rasmussen, C.E.: PILCO policy search framework
(2013), http://mloss.org/software/view/508/

12. Deisenroth, M.P., Peters, J.: Solving Nonlinear Continuous State-Action-Observation
POMDPs for Mechanical Systems with Gaussian Noise. In: European Workshop on Re-
inforcement Learning (EWRL 2012) (2013)

13. Diehl, M.: Numerical Optimal Control (2011), http://homes.esat.kuleuven.be/

~mdiehl/TRENTO/numopticon.pdf

14. Domahidi, A., Zgraggen, A., Zeilinger, M., Morari, M., Jones, C.: Efficient Interior Point
Methods for Multistage Problems Arising in Receding Horizon Control. In: IEEE Conf. on
Decision and Control (CDC). pp. 668 – 674 (2012)

15. Domahidi, A.: FORCES: Fast Optimization for Real-time Control on Embedded Systems
(2012), http://forces.ethz.ch

16. Erez, T., Smart, W.D.: A Scalable Method for Solving High-Dimensional Continuous
POMDPs Using Local Approximation. In: Conf. on Uncertainty in Artificial Intelligence.
pp. 160–167 (2010)

http://rll.berkeley.edu/beliefopt/
http://rll.berkeley.edu/beliefopt/
http://ijr.sagepub.com/content/early/2013/11/14/0278364913501564.abstract
http://ijr.sagepub.com/content/early/2013/11/14/0278364913501564.abstract
https://github.com/casadi/casadi/wiki
https://github.com/casadi/casadi/wiki
http://www.roboticsproceedings.org/rss09/p18.pdf
http://www.roboticsproceedings.org/rss09/p18.pdf
http://deeplearning.net/software/theano/
http://athenasc.com/dpbook.html
epubs.siam.org/doi/book/10.1137/1.9780898718577‎
epubs.siam.org/doi/book/10.1137/1.9780898718577‎
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980508
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980508
http://www.springerlink.com/content/978-0-85729-398-5
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5354013
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5354013
http://mloss.org/software/view/508/
http://hdl.handle.net/10044/1/12209
http://hdl.handle.net/10044/1/12209
http://homes.esat.kuleuven.be/~mdiehl/TRENTO/numopticon.pdf
http://homes.esat.kuleuven.be/~mdiehl/TRENTO/numopticon.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6426855
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6426855
http://forces.ethz.ch
http://arxiv.org/ftp/arxiv/papers/1203/1203.3477.pdf
http://arxiv.org/ftp/arxiv/papers/1203/1203.3477.pdf

17. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM (2008)

18. Hauser, K.: Randomized Belief-Space Replanning in Partially-Observable Continuous
Spaces. In: Algorithmic Foundations of Robotics IX, pp. 193–209. Springer (2011)

19. Hollinger, G., Sukhatme, G.: Stochastic Motion Planning for Robotic Information Gathering.
In: Robotics: Science and Systems (RSS) (2013)

20. Indelman, V., Carlone, L., Dellaert, F.: Towards Planning in Generalized Belief Space. In:
Int. Symp. on Robotics Research (ISRR) (2013)

21. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and Acting in Partially Observable
Stochastic Domains. Artificial Intelligence 101(1-2), 99–134 (1998)

22. Kaelbling, L.P., Lozano-Pérez, T.: Integrated Task and Motion Planning in Belief Space. Int.
Journal of Robotics Research 32(9-10), 1194–1227 (2013)

23. Kontitsis, M., Theodorou, E.A., Todorov, E.: Multi-Robot Active SLAM with Relative En-
tropy Optimization. In: Proc. American Control Conference (ACC). pp. 2757–2764 (2013)

24. Kurniawati, H., Bandyopadhyay, T., Patrikalakis, N.M.: Global Motion Planning under Un-
certain Motion, Sensing, and Environment Map. Autonomous Robots 33(3), 255–272 (2012)

25. Leung, C., Huang, S., Kwok, N., Dissanayake, G.: Planning under Uncertainty using Model
Predictive Control for Information Gathering. Robotics and Autonomous Systems 54(11),
898–910 (2006)

26. Nocedal, J., Wright, S.: Numerical Optimization. Springer Verlag (1999)
27. Patil, S., Duan, Y., Schulman, J., Goldberg, K., Abbeel, P.: Gaussian Belief Space Planning

with Discontinuities in Sensing Domains. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA) (2014)

28. Platt, R., Tedrake, R., Kaelbling, L., Lozano-Perez, T.: Belief Space Planning assuming Max-
imum Likelihood Observations. In: Robotics: Science and Systems (RSS) (2010)

29. Porta, J., Vlassis, N., Spaan, M., Poupart, P.: Point-based Value Iteration for Continuous
POMDPs. Journal of Machine Learning Research 7, 2329–2367 (2006)

30. Prentice, S., Roy, N.: The Belief Roadmap: Efficient Planning in Belief Space by Factoring
the Covariance. Int. Journal of Robotics Research 28(11–12), 1448–1465 (2009)

31. Schulman, J., Ho, J., Lee, A., Bradlow, H., Awwal, I., Abbeel, P.: Finding Locally Optimal,
Collision-Free Trajectories with Sequential Convex Optimization. In: Robotics: Science and
Systems (RSS) (2013)

32. Sommer, H., Pradalier, C., Furgale, P.: Automatic Differentiation on Differentiable Mani-
folds as a Tool for Robotics. In: Int. Symp. on Robotics Research (ISRR) (2013)

33. Stachniss, C., Grisetti, G., Burgard, W.: Information Gain-based Exploration Using Rao-
Blackwellized Particle Filters. In: Robotics: Science and Systems (RSS). vol. 2 (2005)

34. Valencia, R., Morta, M., Andrade-Cetto, J., Porta, J.M.: Planning reliable paths with Pose
SLAM. IEEE Trans. on Robotics 29(4), 1050–1059 (2013)

35. van den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: Optimized Path Planning for Robots
with Motion Uncertainty and Imperfect State Information. Int. Journal of Robotics Research
30(7), 895–913 (2011)

36. van den Berg, J., Patil, S., Alterovitz, R.: Motion Planning under Uncertainty using Iterative
Local Optimization in Belief Space. Int. Journal of Robotics Research 31(11), 1263–1278
(2012)

37. van den Berg, J., Patil, S., Alterovitz, R.: Efficient Approximate Value Iteration for Continu-
ous Gaussian POMDPs. In: Proc. AAAI Conference on Artificial Intelligence (2012)

38. Vitus, M.P., Tomlin, C.J.: Closed-Loop Belief Space Planning for Linear, Gaussian Systems.
In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). pp. 2152–2159 (2011)

39. Webb, D.J., Crandall, K.L., van den Berg, J.: Online Parameter Estimation via Real-Time
Replanning of Continuous Gaussian POMDPs (2013)

epubs.siam.org/doi/book/10.1137/1.9780898717761‎
epubs.siam.org/doi/book/10.1137/1.9780898717761‎
http://www.cs.indiana.edu/~hauserk/papers/wafr2010-belieftrees.pdf
http://www.cs.indiana.edu/~hauserk/papers/wafr2010-belieftrees.pdf
www.roboticsproceedings.org/rss09/p51.pdf‎
http://www.cc.gatech.edu/~vindelma/Publications/Indelman13isrr.pdf
http://www.sciencedirect.com/science/article/pii/S000437029800023X
http://www.sciencedirect.com/science/article/pii/S000437029800023X
http://ijr.sagepub.com/content/32/9-10/1194.short
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6580252
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6580252
http://link.springer.com/article/10.1007/s10514-012-9307-y
http://link.springer.com/article/10.1007/s10514-012-9307-y
http://www.sciencedirect.com/science/article/pii/S0921889006000972
http://www.sciencedirect.com/science/article/pii/S0921889006000972
http://www.ece.northwestern.edu/~nocedal/book/num-opt.html
http://www.eecs.berkeley.edu/~pabbeel/papers/2014-ICRA-homotopy-GBSP.pdf
http://www.eecs.berkeley.edu/~pabbeel/papers/2014-ICRA-homotopy-GBSP.pdf
http://www.roboticsproceedings.org/rss06/p37.pdf
http://www.roboticsproceedings.org/rss06/p37.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/PortaVSP06.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/PortaVSP06.pdf
http://ijr.sagepub.com/content/28/11-12/1448
http://ijr.sagepub.com/content/28/11-12/1448
http://roboticsproceedings.org/rss09/p31.pdf
http://roboticsproceedings.org/rss09/p31.pdf
http://dream.georgiatech-metz.fr/sites/default/files/isrr13-optimization.pdf
http://dream.georgiatech-metz.fr/sites/default/files/isrr13-optimization.pdf
http://www.roboticsproceedings.org/rss01/p09.pdf
http://www.roboticsproceedings.org/rss01/p09.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6507562
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6507562
http://ijr.sagepub.com/content/30/7/895
http://ijr.sagepub.com/content/30/7/895
http://ijr.sagepub.com/content/31/11/1263.abstract
http://ijr.sagepub.com/content/31/11/1263.abstract
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5159
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5159
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5980257
http://arl.cs.utah.edu/pubs/ICRA2014-ope.pdf
http://arl.cs.utah.edu/pubs/ICRA2014-ope.pdf

	Scaling up Gaussian Belief Space Planning through Covariance-Free Trajectory Optimization and Automatic Differentiation

